puter.ai.txt2img()

Websites Puter Apps Node.js Workers

Given a prompt, generate an image using AI.

Syntax

puter.ai.txt2img(prompt, testMode = false)
puter.ai.txt2img(prompt, options = {})

Parameters

prompt (String) (required)

A string containing the prompt you want to generate an image from.

testMode (Boolean) (Optional)

A boolean indicating whether you want to use the test API. Defaults to false. This is useful for testing your code without using up API credits.

options (Object) (Optional)

An options object with the following properties:

  • model (String) (Optional) - The AI model to use for image generation, it can be gpt-image-1, gpt-image-1-mini, gemini-2.5-flash-image-preview (also known as Nano Banana), or dall-e-3. Defaults to gpt-image-1-mini.
  • quality (String) (Optional) - The quality of the generated image. For gpt-image-1 and gpt-image-1-mini, it can be high, medium or low. Defaults to low. There is no quality setting for gemini-2.5-flash-image-preview. For dall-e-3, it can be hd or standard. Defaults to standard.
  • input_image (String) (Optional) (Only works with gemini-2.5-flash-image-preview) - Base64 encoded input image for image-to-image generation.
  • input_image_mime_type (String) (Optional) (Only if input_image is set) - The MIME type of the input image. Could be image/png, image/jpeg, image/jpg, or image/webp.

Return value

A Promise that resolves to an HTMLImageElement. The element’s src points at a data URL containing the image.

Examples

Generate an image of a cat using AI

<html>
<body>
    <script src="https://js.puter.com/v2/"></script>
    <script>
        // Generate an image of a cat using the default model and quality. Please note that testMode is set to true so that you can test this code without using up API credits.
        puter.ai.txt2img('A picture of a cat.', true).then((image)=>{
            document.body.appendChild(image);
        });
    </script>
</body>
</html>

Generate an image with specific model and quality

<html>
<body>
    <script src="https://js.puter.com/v2/"></script>
    <script>
        // Generate an image of a cat playing piano using a specific model and quality set to low
        puter.ai.txt2img("a cat playing the piano", {
            model: "gpt-image-1",
            quality: "low"
        }).then((image)=>{
            document.body.appendChild(image);
        });
    </script>
</body>
</html>

Generate an image with image-to-image generation

<html>
<body>
    <script src="https://js.puter.com/v2/"></script>
    <script>
        puter.ai.txt2img("a cat playing piano", {
            model: "gemini-2.5-flash-image-preview",
            input_image: "iVBORw0KGgoAAAANSUhEUgAAAFsAAABbCAYAAAAcNvmZAAABWGlDQ1BJQ0MgUHJvZmlsZQAAKJF1kL1LA0EQxV/0JPiFESwtrjQSJcZolyImEkSLEBVNusvmvAiXuFxO1P/AQls7ITaCoNgI14qF2AsqVhYiWlkI12hYZxP1EsWB2fnxeDM7DNCmaJybCoBS2bYyqSl1OZtT/S/oRB8C9A5rrMLj6fQcWfBdW8O9gU/W6xE56+n0Yrc3tn+yfRByq8nH3F9/S3QV9Aqj+kEZYtyyAd8QcXrD5pI3iQcsWop4R7LR4KrkfIPP6p6FTIL4ijjAilqB+E7OzDfpRhOXzHX2tYPcvkcvL85LnXIQ05hFBFGMIQsVqX+80bo3gTVwbMHCKgwUYVNHnBQOEzrxDMpgGEWIOIIw5YS88e/beZpxBEw+EBx7mp4EnFf6WvO04DPQHwYuVa5Z2s9Ffa5SWRmPNLjbATr2hHhbAvxBoHYrxLsjRO0QaL8Hzt1PBAlkAaSoB8oAAABWZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAOShgAHAAAAEgAAAESgAgAEAAAAAQAAAFugAwAEAAAAAQAAAFsAAAAAQVNDSUkAAABTY3JlZW5zaG904ZG7uwAAAdRpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IlhNUCBDb3JlIDYuMC4wIj4KICAgPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4KICAgICAgPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIKICAgICAgICAgICAgeG1sbnM6ZXhpZj0iaHR0cDovL25zLmFkb2JlLmNvbS9leGlmLzEuMC8iPgogICAgICAgICA8ZXhpZjpQaXhlbFlEaW1lbnNpb24+OTE8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpQaXhlbFhEaW1lbnNpb24+OTE8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K4RUGBAAAG9hJREFUeAHtXHt8VdWV/s65r4TwSAgQAiG85A2C2kIpFigoCFWoL1oftba1M/VFZ2gtU7XKtGXq0PZXR6rT4ovWKdWqg8hItYDCIA95KE8Bi7wSCBDCK+QmN/fec+b79r0nXtNUwNxk8sdd+Z2c195r7/3ttdZee+19roWCDS4y1CwI2M1SSqYQg0AG7GYUhAzYGbCbEYFmLCoj2RmwmxGBZiwqI9kZsJsRgWYsKiPZGbCbEYFmLCoj2RmwmxGBZiwqI9kZsJsRgWYsKiPZGbCbEYFmLKqFSHbK+oUuXZ/+AZbDc5wHzyZJTeK56088Qyxxb14qrRIl0ytP3XUynfi6arKXzkvLR81AqnULoSgxCLEuAoKgugEeFq8JjivgdOTyqGUnJEGH3usQ8b1Jz3wmrZ4pL99b5G2Rr87mnTpT/EQe+B6fxNOm+N9ywJbEWZFEG41kn+Y9gRWYVjaPLOJTxbM6IwmiUkv6jaQrv9IrDQ+R24rXulAnsqmmM3htNEZNF6/moxYCtsAjoPZh4hLHZQPiuKR/G3Tr1BEnzxzHzr+exNYdZ1B2Mp/IEEDkMT2l00cJd6p5fRadioBLBkZR3D4P+fkd4Q+GUH60EqWHSvHudot5WzM9gZbGOEECrqarJ5oP8DSB/UkV9tQzNY137TWW922P4we3FuC+ewaiXR4Bocr7CEZcZtX2oyZci1f/vBs/+flu7D5IG2y7aJMXxR3TCnD7zRejb3EubF8cPkqtZbPzZCXsOFx3JGojNt7/sAxPzd+FPy0pxwkBj7Y8ZHKS4wOvPgLeq7N5mLZ/VuNX19kw0zKhokomKyqz4PKZzcZIbZ0yvjuBboUhFBT44RDf8uNVKDlShW4dg1j1ylfQuTuTxHMQ8FNiY35mpyz4Y3As8rRiBpZTZx3c98BS5OXlYtb9Y9AqxHfsEVcMVQ+W5dhKbwtrWD6W76hOem6j8kQN7v/XVfjNS8f4qDefy0RpvKC0Q7Zd7UiTDJJTKqUBbDVSh4iNMvZWjdMt7W5OOb4ysROuvboYw4cVomPbIMFkMg564UgcFccpwcFadCwiyGxnkKBGnRhOhbOx/f2jKChsix5dchDiSwouS7Bw1qml1Q4gO2DTDPMhbXE85oNDwE9X2/hwz3FU10TQv29XtG8XZ38zl02JZ6c5rF80EsPcX2/C/fP2AJXsYUs2XYBzXBDQrINKSjelAWxJgkiV0yFEONDlnsJjP7wIt107AK1DLmxKmqQrZsTNpZTadNwk9REC74MvpsEtgBVrj+HfH9uNZatP8r4DjzOUYhdfv6EjHrzvUuRmBRFXNoITICaReBCL3jyAFxcdwGurqlB9qpJ5OvJgeVYFkOXD5JEdMGVSe9w+rR98tO+wWtEDdPDWqqOYeMcajqkXMb0EJunJGK8l/dKdBrCNcUxWVkBXo2f34/iveWPw2f55lBMXEaJiU1398SjvYtR6Gz5KpayLRam0BAylckdJJQZPfBsIayCUm8bGS71lIqxj+P2jHXD91B4IZeUjznxnqyzM+ukazP09TZTLjrHoGrrKp05X5wrAM7yUGQNuvMrBY78ag7w2EaYIwE/eP/31G3h4zikm7ZfIZ9xKgd4iJZv1UktMw6oxaZyD558ai9ZZlTSFrVAr9aXt3rjxNBYvLcGmndU4Vk7XzHWRl9saQwZn4ctTu6JfvwJcP+1VvLOpG9tJkORzy782NjSCUZ89jOULr0WQWkBjgM17zmDcV9fj5DGla8d0TCvXzmAkbdMFVUCdZYV5rWdUhZxqvPmHwRh9SR7iwQBilS6uvuU5vLW+kOk6MQ0l3+XgacrlbRopPZKtRlISLxt2EisWTUBOVi3bzsGo1sY7G09i5sNb6X5pMlLAhnhACEhNTugZOGxgG9rLswRHEm0Aa8O0dOuoG2077sXOVdejc65jJPpoWRgjJ72B0mNF5j3/XQCRf6sSbFs+CQO75dCWR7BnfxXG3PAiyg5fmuycprHZ0rVGEkGjSrbKr8CfF01Cjo/2OpZDUEJ4Zn4JrrxhJd7dQenytU+CKEBlD3XkJM7yf2kSjFegyYsmIyDQAp1m4fapxchvV2MEPspn989ejdKjBNp4EExzIaQ81d3x7e++xYE4jhg1pVdxa1w3iVLtUgOM/y2w00+NB9sluG4VnpjdF205g4s7IdRwEPrlb7bhnx4+yBp353uCyoEsYXsFKqU7dcR35fcKYHaAiV3w0mgAzxzkbpvWgx5giN5GHBvWn8BzCymdNrXi06i6MVFRrHsnG4/P34qYes8J4JZrh1MgOKBCA6xsdvrpAsHWgJN68JaS2LX7CVw/qRh06lBtn8WLL57AzJ/tIyD0YY3NlPvAfPKXTX4VS2k2tl5Ta0qUJFmzO9lVM21n55A6FACDBtCkmJiIjZ/PWcJ0nXgvM+PVxeOr+/MgE3dpj/kvVxiX0LWrMWxQZ3TtxDpoYDUxGmlsKv/z4HuOJBcItrjJ5qoiSbJj+PpVXRAI0iULOojUZOGBRzYRG6KkmIWJVyi9APEONUJ8PNDVGR5f5eF74yqG0a+4FafefliBICrPxrB6h/KqI2TbyVfjhRkz+Mh4MDp/EqkOLJf12sZxJE5tclhWKOBDn14SDr2XtrLTTcxFLmlKez+J9TnefQqwPcDEmQ13zmDq1E7Eh5WKRbDghQ84cMk7IIDG9sr+CaBU8nh4Z76jKhuAFUSiuchvX0a/2MaP7+9P31iNt1HrRHHDxBC6dN7G+6PMxPyGhQDhcd42XM1mh8VD2PzeQdjUQIvgDujBDoQCYKy7N/M1M2HVv34b+OgC6VOArSxqYbIC/goMvrgL/FaQcYlsvLHsEN+xIfS3E2kkhUp/DtJkRx3Ghk65qgZb1k3CvP/4HMaObMuSAuTAWWaujXm/+jI2LL0Rt3xZQB9gHkm4XDXViyCdkzzQlNbPOEmYEy6ZrgAmjO6F4sKd7GxJNetj0f+2NJ6kx4ZfINgCLRU4B9OmFLGyPsSo+pEYB7D3vQFGNpmAGzvsNZCPGiTylARllePV54rwwjPD0THb4qBIkKPZiBAIl/EON55F4P0oaB/C03OvxLO/6o8OeR8wryYlaook/FykuiRNFmeKLjvJpSbV+qOYOmUw1v/lm7jmqv1MQwl3NVZIaKhZaaALBDspzXWAu+hAabPo7vn4Knw2gvIqSQUlQYexvWpYfRIfNYBpHbmAMgGl+N0v+mLiFzsxPpKNANU6Eo/hpONg0dL9+O2CHThWRVBoqtyoePowbdpgPPfrkRRQapNmieJ3TqJEJ6auLLs1DpywEI4lOtth5+a3aYX5/zkBYy6p4HvOPtnRCU8pVcjOWUiDCS4QbPEQUKJE4WLgJ7AK8kSNbWWjTWPUeI99/YqKh0BWwwWQg1tv5lR8Sm/4GWuOUkoPMDr3j99fjfzBb+Cmr+3AXTNKUdhvGaZ9Yyu27T9q+jHE6f/Y0T1xzXhO0+PqPJ7PSSybvrUxc6ze9OmHMXrscjz+2+30ieKIc8BvF2jNaf2XUNTlQKK5FkGva/c5C/i7CTw0/m6Cc72IM65snAJKoM2AfcK9E4AC1OuY+lzUYNlySo3NATF0GnMeGoFsTYio0mXHazDm6pX4/UtMd5YxD3Tl0Z28C7D4TeDSiRuweuNR0ymPPflXLF6ugY0damacvPxEko2nZmhKLtfRb2Pz3nb43sNV+NY96xheUOYoBvUO4Xt39WB9FBCTfW88NRrsLTup1qycAkrBrFYobiMVZyOMu6RzQyRJl+RLC4DRQ4IoYOgVdoiGII6fPfIODpbKj9YhYNh5itaxI4x5qumBm+/agpmPbMfMn5RQqruRF4NX7PhzkzRKzZbpoiY49JzMgO4wcmjjhRcOIu6nANFTmXzlQAoCTZRWkepMJy8/JTUSbAtr3i5nDFmlR5Hlt/D5YZoJqtFJ0M3AVR8EFmv8aoEIfH5kF+ZW8x3GsE9h3p8IIL2bhESpoeSlmLOZSjMDTdaRsjw89rg0qCN5aIBMSjefnJvUbPHUYM58TnL2iiz8ZM4OozFatCju2gF9i5jEaEz9Npy7lPopLhBsSaSXRdeUEoY2l7+9j2f6CTQl06b243NKg1ZA6oAWKKkkqVbllT+ER+ZuxdDRi/Hdf16GFxYfZPu78h3LMbZfoAh4pdeh8snPgO9pCMuS63hBJNPA8jWrNTNW8QrgYLn+B+lJhhgGttA5X25l/fpfUEF1iaVTjSNfHl5ZVIbrxveiza7F5eN6o3/RCuwq6cxKKqgkoBqqrMAhcJIqqy92f1hjjoTfzLwOpU6Ti+YgM8tV53LM4GDvysQwxqOlIX9IHSuPpPEkMWkkWVjweg1KKqppXn1o08bF009cz3XF7ay4JJgVr9OGZFHyBjQ4mkmMvAgCH5cmsGNkXmwBrU5qJlK5Rii4gpRXQ+9K5ToEPYCTpyQU6en0xoNN04HaXDzxzC7EuEDro2SM+EwBZs8cRTz3saIKMpna85wkaaweGYmRRLFDfJJ+ztY0GClKWD8PnzQNyYwkTQn3pUy5PMT+5tyBNrsq7GBviSS78TCp7mngQnWjBP/86SN46c97CZHF2SRwy7RBeHZOXxQW7mEx9CRkSiTpCvR42BubzleKsvFx4oUGOo24SpR6SEvEQ1VmeNXwUSam0eCoe29QTs2nqXedJyF+yk9pNRFD5eOtoVoMHhjGk49dYfwkl6HXTRtKcPq0vJX0UBrAVm1pEmoKcMt392Hb7jMI0V1zQ2FMu6kPNr91I+67k6YiuIUNO852U9JNLILSLBup1RotsDpU1bqFVoGqBkqFvUMPBCjzyQyZhWN1It9LQ4zd5W1d+mQ+M7PUqrk6S95HkreJl2uAVPklGDW4DEv/OAGt6VE5XB+NcUo8d94+vtP4obyNpzQsi0lyNMjJXDho2+EQ3n19Mrp10JS7llHKGLWwNU4yPLpu4yEseeOvOMKdSq7AJbn6o7S+sorSHClOgG6fxuSxcWQFZO9JRup1kQDcZfRv4SpqQw3dPr1sxcjj5VrJ4bYFmYSPEfeLOFl4ZS1ngVU9E2+yTuG6seJtIa9dK8y4cwR69qH3QY2xJShMP2/BLtwzcz+TdGCx0rxUDflYAed9kwawVWlKkVa3vX12WSfw43t6YMY9g+Anpn7aY9tJuGcW1drh/owk1qaisaiLPsOfRmn5YLKilPrKUb5jAnJzU4FTt0QplwHY0Rr0G/EaDpQJPBs9iiqxY+0oOps2JySpefiWGDkMkA34wnPYUzqc6cMoKq7C7rWXI8uYHgqDOtwOkLvL/ScuXl18CDdN38S6dEn2rwSj8Uag8RzMchaBhKa1kjyuNUYK8dAvjmLEhCV4hXY8ytlY1MfRna5c1EhJrZEiP6HzUf0tmg/NQBOdxhNnijaDWApu2bTzOvvkx3PwDbBjLXWWwZQmgBDxiVnFd5QmzmhhXPtSIswb48aqOFNoMw9NgSYxLCeLCxEBlctF6ZhA5vY216lBuNLCj2a/g5vu2c2qdCdvdrxml9KeNFDj/WzZQFGdq0Y7LMzd9tix28VXv70Rlw76ENdMLsLQYTkYNqQrVTfERTGH0T1KVJA2ki6jsiRWRmS/uSojwCjxAknm2U+fN4urKT6untBZYHnUKOO11PA+ghqOyj6aAG1z0CDqp13n7hTjqluK3xj3TqAxBQE+U8sdVeQfjjrY8l4Z1m88hacWHMHeA6yJlafaJEiRy5YDtlerlLPxo3WvafBArq5HeDDgpGC8u5PnswzNnsC+LXciRFtvM6Rqmek7+14DGidDPQa+zLxUX7PdwY8O7WtwZNvXjJcmzgkieMx3+EAOCov/m490r56oweRRwMt/vNnEFpOJk6cY9u6uQoeef0h0rracWfI4NIhyttiElAbJbqB2RusooWZCoxuCRhOQCOioA2wcp2diM+Lmo8QR3gTJHZM5saW6A3jIo9CY4MdxHDPpuG0vhSR18igIsFXMvLw1s844wtyWYDFxIjalFx4pLcF1OT7UTcNlLpTGq8nHCvEyNvrcBGBLMllZs0kxOYIbn9YzN2oUD9rlAE2FRS2IUZppLPhc4JKMZhBk2VmlNb4189fHQB6QMSXKp3QCjcR0jsyG7I9GYlN+4lVCW1QX8jbuJss1bqAGQWY0Gqa06Ycm/RxVYeFppEQAkow7JrAEiBqkh3SnOPK5vNeWYG5S4zO+V1qNfqbRAls8xDAJJK8MG5Oez4x06j3TeXnI00cfXh0YV3yDttlnyhXAYqCyZKJ40gNzrxcigd40lEQjnczVAtOKFKaSPBZlBimZCIJja0MPvQT6ZgLio1C0l9/j4Z1T2NVdeu/+No/3xk9fP0YpjZgC6MubDklN//eu6wpJ20UTgN1Q3SR5UuekbSTIBVlhqrrcPrp5dNc0zf+4ujfE5/yfuUnTYXFTfZRlZAc4qXE0AH6kIefPLT0pmwlsASkJkoRz1dq3F7Nm9KXrx+UCTnbicqSNgOlf+sjiNNvlrCqL0+9vfaUfy9hDjZJv/v9DaQBbUisQvYO2z6yaqEGyg/S7FQwykwqqcXYFlrwwBrff2p+GpRXNcy0OHArjcKWWwMRL5NnPxN3f3nvP659Nj5mHu/YBH5ScRJSb7O1YDPfe+Tncfy9nhH66nmZln3XRCowZHAmD/Ha1weyCSm+ne7VMwwDpAaMKqu8EmMKklejWpRxXj+uMzl0sbNhSgpWrD+GlZ6/BFy9vQ6OiBsZxojKGq69bxll0p2Sd9NwDXfw88p559w2dVRf681STssPtMXTcUmxfNgl9+AmJjzPXB34wEt17tMes2cswecJYFPeiz73rBJ5fegyR00WsvmI8Cm7J1KR/oExDbEQSLVBYQYVQFbmzD2DGHb3w4PcvRtscfu/Ctw6/eamqCqNtG2244cdF3N61f/9ZfOM76/D2FsaxjR0RHx2eZAk8XssE5ZejdvsETrO5DY1F9B75R3521yclLS/ryMsXxZABp/E/C0ehKCeHQlvLHbYBRLj/JCeHdVBZNDX7D5Xj0d9uwRO/owY6mj1qEFc90ktp4ChgNPhJ8mgPCfTSBZ/H7Af7IK+VvA3KMF+H2Bd5eQzMM1BkcXfThwR63FQC/Z6ATkxcEiCLjw4PcF6eN6lbCZgxBewRmq5tO3MxatxbWLW5wnxeEuSgnNvGhwAr5aNH5GPMpndhAX4560rMnE44zJa2NMDSQJ3TwFUsZI3U0LO4YnRHfGFUodmSBjbER2l3owxAUeL1wZKkSUGlBx94HSXHaKd9zOtwS0GdrUyai+Tpow74qPb0ztkVSiAJFulah1SfvSrtMjNWmgU7C6Vl7fAvs1YxIOUwSEX/nrn5KRViXGdkDBLRYA1CnFh97x/GY3DfCr5mhzUBNR5sM8BQCrUQ4MvFTV/qwmk4A0CBbOzaW4kJN7yGYNFCfOPu/zXYWPxmMcYpddeeVFWzckOAPraxPVklxURMB0ilJa3UEs4sXQ5kcQKkGLjZhiAevE8c6nCBzndSDA3K+poA7fj1b08uanDXFj/xO3OauwBuXYpQ91cxcuIynJFXyIlUbhs/7r3jYuaT3U4/JVvWCMZG22kGZFfpxhUWcBpOGQqwnfOfWYNlawmUvycWvFyL5W8eYbwizEUFG/37eQOiXDFJpMgglDxTAqnm5vM6txzfvCJEO6+Is82PmIDP9BGQB5nWk2rP7qfy0Ws1McIYNhcH2Mk29w++9toOLFzK+IjTGe9uDWElP+2Djwsd3Hk7lJ2S8FDEJ73UeLAFkFE7saLUaqMk7SI4Uclrx0ia4g/aoNiqAoOGEmCzu8hFdVj5vMboQqClEvMqRhKqxPPzL8bjj15OmCnTlHYfgXn2ySl46Ifkl/MBM8ls8GiQaFaoGZXV8un1PWYIbfOZ1neUefQujM5FnOwoDMu4diTCTvR+aKBBfp/+oYxt48gEjSi9irz5KrF6jYWrr+BHnYGzuPM7n0F22y149z1unLxtPAo7CNQgaqne6zdJotUxtNta4DW7nVKronDsGSx6cggmju7A/iQIDPpz8snteUF+XObiobvH46LiDbjt7hJmVGcLvPrEMgnk5s3cNkmX0uY4Mn7cMMybXYu31x/BhHEDcdnQfEq8ljIcrFh5nAxUp/RT410/mQ/ZRtlNDUxtjuHEpmv5eV6EsGaZfc/65NlHdfYxwF9LSV+z7RTG3biYQsUwqgmJSiplStQZHtXgjltDmPtvQznTVBlxnKoKMsC/AtO/9kUEuXkmzkEtFncwZvIr2LCtb6L8+tE62X2uacoOv7fiMgy5qC2/ZNPKDTuHZQfoCcVZL4sLGB/wE73PTlqIcHgI33n1SN9Z4tA4qpuAkI2k/Ewebv3OX3DkFG0g1T5IHINUX38tv7mhBO8/Uom77l3GuUdnZlBsm1rRILkYOzbX+C8u49JlFXFOUhZh5izGOS79Hd4/rEVjl15EEKNGiBdNlbHP9Zlx4JbEcy/23dP3cXuZa3z+gPJysLZj2XC4WlPJ67t/sA5hfraXiALW59P4+8aDXVcHiYLYBbFkeTsMGLsejz67HZv4WyFnogGs++Aw5vzmMPpftYZeSlc2KJ9pCYT8c2M764tSFH5/tVmLVBErVr2L0lKlL+KOhCK8v/EEB0r9cgNQ1J1gGg+iIatIATCrMVlYs8VFr8+9yc+n3+NHsBWo4vra1oMn8cundmL4hJVYsb49+ZBXXdhAJaePGqrdp+DuAaWz7CZ38x9vjxk/4tTZXsvBkmdtz7XYGJszNB/Fnb+sYDwYo/bKV2+ANGMBF3b1mO7dgP49E9t3a4/xfAy9B11sPlqwOBCfPsX8ZrFC5qw+sSwtMhstYmdV52LO42HMmbuNz+jiyeNBN9atC880N/rhF1MX1Sm9lCawValk5QxIbJQJ7JC9U5h4pT0FsuuyoXG6acbOC0nZTgJitCK1gX4sWXwE147ryd2xFgb364KVLw7H5u1nMH7EYPTryUGM7OIc8FatqWD+giTPespqtrjR1zaAM5m2uKlsEwdhx5vOVMezztTKhAnRw9S6KF/jqfEDZOPr0DAHTZLip/H8M31w3eTOcGq4X4TTf/6mDuNUMh9BM8l5fW0pvvTV9wk89wdqcUIDXwulllszDZy+Lpj+0D7a1xrula7mRImLZzG6lQTaoaas3lmOGfdvYadoUYBgp18Y09ptLVeyzTRc2wu4sSbrJCaNysYNkwuRlx9HZdiP1xaX4k/LaR5qOyalWZ4N05rPtNOKUdqYtWCw6UWYPSMUV/rY5gtguXd0II2xtmmzZYc1BsjkmN8Ike1mLL2FUhoHyDS30AyayYmOAVSDFj0ajYoaTI1PzWcmVKCO0aKBpFvpWia1XLCNd5IKmmeQvWFGoIu857puuUCrdl7NdZ2hJkYgA3YTA5zKPgN2KhpNfJ0Bu4kBTmWfATsVjSa+zoDdxACnss+AnYpGE19nwG5igFPZZ8BORaOJrzNgNzHAqewzYKei0cTXGbCbGOBU9hmwU9Fo4usM2E0McCr7/wMg2h3a0gvzvQAAAABJRU5ErkJggg==",
            input_image_mime_type: "image/png"
        }).then((image)=>{
            document.body.appendChild(image);
        });
    </script>
</body>
</html>